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Beograd, Serbia

a r t i c l e i n f o

Article history:
Received 25 April 2006

a b s t r a c t

The motion of a plane non-holonomic mechanical system, consisting of two point masses, which move in
such a way that their velocities are mutually perpendicular, is analysed [Zeković D. Examples of non-linear
non-holonomic constraints in classical mechanics. Vestnik MGU. Ser. 1. Matematika Mekhanika, 1991;
1:100–3]. The equations of the constraints of such a system are derived, the reactions of the constraints
are calculated and the cyclical first integrals are written.

© 2008 Elsevier Ltd. All rights reserved.

1. Analysis of the constraint equations

The practical realization of a system consisting of two point masses, which move in such a way that their velocities are mutually
perpendicular, can be achieved using two knife edges and a weightless rigid construction (“a fork”), as shown in the Fig. 1. This system is
non-holonomic1.

Suppose x1, y1, x2 and y2 are generalized coordinates. The condition for the velocities of the point masses to be orthogonal can be written
in the form

(1.1)

Two other constraint equations express the conditions for the velocities of the points M1 and M2 and the planes of the knife edges to be
codirectional:

(1.2)

Constraint equations (1.1) and (1.2) are dependent, and Eq. (1.1) and any of Eqs. (1.2) or both of Eqs. (1.2) can be used. Since the reactions
of the constraints R1 and R2 are perpendicular to the planes of the knife edges, their scalar product is equal to zero.

The left-hand side of Eq. (1.1) is a homogeneous function of � of power two, and this relation can be written in the form

where qi are generalized coordinates, and the possible displacements permitted by this non-linear constraint, we will define, like Chetayev,
in the form

Here and henceforth summation is carried out over repeated indices, where

Note that the coefficients of �qi depend on the velocities.
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Fig. 1.

2. The trajectories of points of the system

We will write the equations of motion of the system, choosing as the generalised coordinates xi, yi, � and � (see the Fig. 1),

(2.1)

Taking �̇ and ϕ̇ as independent velocities, we obtain

(2.2)

The kinetic energy of the system, provided that the masses of the points M1 and M2 are equal to unity, can be written in the form

(2.3)

where T* is the result of eliminating the dependent velocities in the expression for T using the constraint equations.
The system is a Chaplygin system in its inertial motion, and its equations of motion in Chaplygin form are2,3

(2.4)

Using (2.1)–(2.4), we obtain the following equations of motion

These equations can be integrated in succession giving

(2.5)

(2.6)

In the special case when �̇0 = 0, the point M2 will be at rest at the centre of a circle of radius �0, while the point M1 will move uniformly
over this circle. On the other hand, if the point M1 is at rest, the point M2 will move uniformly along a fixed straight line, connecting these
points.

We will put �0 = 1, �̇0 = 1, �0 = 0, �̇0 = 1
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From Eqs. (2.2) and (2.6) we obtain the laws of motion of the points M1 (s = 1, �21 = 0)7 and M2 (s = 2, �22 = 1)

3. Integrals that are linear in the momenta (cyclic coordinates)

We will show that, in the system considered, for each of the two linear integrals (2.5), we can choose generalized coordinates such that
one of them will be cyclical (in the sense given earlier4), and the integral corresponding to it will be cyclical.

We will choose as the generalized coordinates of the system

and we will write the constraint equations in the form

The equations of motion allow of two first integrals that are linear and homogeneous in the velocities

The Lagrange and Hamilton functions have the form

We will choose as the new coordinates Q1 and Q2 the Cartesian coordinates of the point M2, as Q3 we will choose the length of the
section M1M2 and we will choose as Q4 the angle of inclination of the section M1M2 to the x axis. The corresponding conversion formulae
have the form

The Lagrange and Hamilton functions, written, taking into account the constraint equations,

take the following form in the new variables

Since

the coordinate Q4 is cyclical. We have the cyclic integral P4 = (Q 3)
2
Q̇ 4 = const, i.e. �2ϕ̇ = const.

Choosing as the new coordinates Q1 and Q2 the Cartesian coordinates of the point M1 and the coordinates Q3 and Q4, as shown above,
we obtain the following conversion formulae

As before, we conclude that the coordinate Q3 is cyclical. We have the cyclic integral P4 = (Q̇ 3) = const, i.e., �̇ = const.

4. The stationarity of the Hamilton action

For the system being considered, we will check that the following conditions5 are satisfied

(4.1)



522 D.N. Zeković / Journal of Applied Mathematics and Mechanics 72 (2008) 519–523

For these conditions the Hamilton principle will be the principle of stationary action. Here ��
� are terms of non-holonomicity in Eqs. (2.4)

and �� are coefficients of the Euler–Lagrange variational problem

The equations of the extremals

in general are not identical with the equations of motion of the system. They can be written in the form3

(4.2)

(4.3)

where

When conditions (4.1) are satisfied, Eqs. (4.2) take the form of the Voronets equations of motion of a non-holonomic system.
Putting

we can represent the constraint equations in the form

We will write the non-holonomicity coefficients (4.4) as follows:

(4.4)

Consequently, conditions (4.1) of the stationarity of the action are

(4.5)

Dropping the trivial case �̇ = �̇ = 0, we reduce conditions (4.5) to the form

(4.6)

It follows from Eq. (4.3) that

and hence limitation (4.6) (taking the constraints into account) reduces to the equation

i.e., � = const. So, the particular motion in which the point M1 is at rest while the point M2 moves along a straight line, yields a stationary
value of the Hamilton action.If we take as the generalized coordinates

the constraint equations can be written as

(4.7)

where the terms of non-holonomicity retain the form (4.4), and, consequently, the stationarity conditions (4.5) do not change. We obtain
from Eqs. (4.3)
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as a consequence of which condition (4.6) becomes the equation

(the second integral of (2.5) has been used). It is only satisfied for the already known case � = const.
However, there is one more case when, in the particular motion of the system, the Hamilton action takes a stationary value. This case

is �̇ = 0: the point M2 is at rest while the point M1 moves in a circle. The point is that in this case the constraints (4.7) are integrable, and
the system is holonomic, as a result of which the action stationarity conditions are satisfied. This case is not obtained from the preceding
analysis due to the structure of the coefficients ��

� (4.4), because the coefficient � occurs in terms the sum of which is equal to zero.

References
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